Facile pretreatment of lignocellulosic biomass at high loadings in room temperature ionic liquids.

نویسندگان

  • Hong Wu
  • Mauricio Mora-Pale
  • Jianjun Miao
  • Thomas V Doherty
  • Robert J Linhardt
  • Jonathan S Dordick
چکیده

Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biofuels and chemical feedstocks. However, the high cost of ILs is a key deterrent to their practical application. Here, we show that acetate based ILs are effective in dramatically reducing the recalcitrance of corn stover toward enzymatic polysaccharide hydrolysis even at loadings of biomass as high as 50% by weight. Under these conditions, the IL serves more as a pretreatment additive rather than a true solvent. Pretreatment of corn stover with 1-ethyl-3-methylimidizolium acetate ([Emim] [OAc]) at 125 ± 5°C for 1 h resulted in a dramatic reduction of cellulose crystallinity (up to 52%) and extraction of lignin (up to 44%). Enzymatic hydrolysis of the IL-treated biomass was performed with a common commercial cellulase/xylanase from Trichoderma reesei and a commercial β-glucosidase, and resulted in fermentable sugar yields of ∼80% for glucose and ∼50% for xylose at corn stover loadings up to 33% (w/w) and 55% and 34% for glucose and xylose, respectively, at 50% (w/w) biomass loading. Similar results were observed for the IL-facilitated pretreatment of switchgrass, poplar, and the highly recalcitrant hardwood, maple. At 4.8% (w/w) corn stover, [Emim][OAc] can be readily reused up to 10 times without removal of extracted components, such as lignin, with no effect on subsequent fermentable sugar yields. A significant reduction in the amount of IL combined with facile recycling has the potential to enable ILs to be used in large-scale biomass pretreatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass.

Room temperature ionic liquids (RTILs) are emerging as attractive and green solvents for lignocellulosic biomass pretreatment. The unique solvating properties of RTILs foster the disruption of the 3D network structure of lignin, cellulose, and hemicellulose, which allows high yields of fermentable sugars to be produced in subsequent enzymatic hydrolysis. In the current review, we summarize the ...

متن کامل

Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Wood Biomass

Pretreatment of lignocellulosic biomass materials from poplar, acacia, oak, and fir with different ionic liquids (ILs) containing 1-alkyl-3-methyl-imidazolium cations and various anions has been carried out. The dissolved cellulose from biomass was precipitated by adding anti-solvents into the solution and vigorous stirring. Commercial cellulases Celluclast 1.5L and Accelerase 1000 have been us...

متن کامل

Pretreatment of Lignocellulosic Biomass with Ionic Liquids and Ionic Liquid-Based Solvent Systems.

Pretreatment is very important for the efficient production of value-added products from lignocellulosic biomass. However, traditional pretreatment methods have several disadvantages, including low efficiency and high pollution. This article gives an overview on the applications of ionic liquids (ILs) and IL-based solvent systems in the pretreatment of lignocellulosic biomass. It is divided int...

متن کامل

Pretreatment of Lignocellulosic Biomass Using Green Ionic Liquids

Abstract Bioenergy is a critical part of renewable energy solution to today’s energy crisis that threatens world economic growth. Corn ethanol has been growing rapidly in the past few years. Policy-makers and researchers alike are becoming aware that corn ethanol has some serious drawbacks. It adversely impacts food prices and is harsh on soil fertility. Lignocellulosic ethanol on the other han...

متن کامل

Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.

Owing to high petroleum prices, there has been a major push in recent years to use lignocellulosic biomass as biorefinery feedstocks. Unfortunately, by nature's design, lignocellulosic biomass is notoriously recalcitrant. Cellulose is the most abundant renewable carbon source on the planet and comprises glucan polysaccharides which self-assemble into paracrystalline microfibrils. The extent of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 108 12  شماره 

صفحات  -

تاریخ انتشار 2011